Innovation for Our Energy Future

Power System Examples

Ian Baring-Gould

Session Overview

- Review different power system categories
- Provide examples of different power systems
- Provide a little information on a number of power systems that you will hear about over the next few days

Renewable Power Systems

- Renewable power system can be used to cover a wide range of needs. These include:
 - Dedicated use: Water pumping/ice making.
 - House systems: Power systems for individual buildings, dispersed generation.
 - Small Power Systems: Providing power to a confined community or large application.
 - Community Power Systems: Power provided to a large community with large loads
 - Wind/Diesel Systems: Large communities with large loads

Agricultural Water Pumping

Livestock watering at the Bledsoe Ranch Colorado,

USA

 PV, Mechanical wind and diesel backup solves problems with seasonal variations in resource

NEOS Corporation

Direct Water Pumping

- Ranch near
 Wheeler, Texas
- Water-pumping for 120 head of cattle
- Whisper 1000 wind turbine,
 1 kW, 9-ft rotor, 30-ft tower

Small Power Systems

- Systems do not have a dispatchable backup generator like most hybrids
- Very simple architecture:
 - Turbine, PV, Disconnects, Batteries
 - DC Loads or AC power through an inverter
- Primarily PV dominated for small loads, wind has potential at larger loads.
- In many instances a combination of PV and wind make most sense
- Can vary in size, power output

Solar Home System

- Provide entry level of service
 - Lighting, radio
 - DC service
- Expandable in size,>20W
- Cost ~\$700 for small unit
- Developed market

Wind/PV Home Systems

- Provide more energy
- AC Power
- Higher output
- Lower \$/kW

Inner Mongolian wind/PV system

Micro-Grid Power Systems

- Small systems with demands up to ~100kWh/day load (15 kW peak load)
- Components of wind, PV, batteries and conventional generators
- Provide AC and potentially DC power
- Use of batteries to store renewable energy for use at night or low renewable times
- Generator used as backup power supply
- Mature market

Subax, Xinjiang, China

- Small community of 60 homes in very remote part of Western China
- Power System
 - 2 BWC excel (8kW) turbines
 - 2 15 kVA Inverters
 - 4 kW PV
 - Low Maintenance battery bank
 - 30kVA diesel generator

Isla Tac, Chile

- Island community with Health post, school and 82 homes
- Power System:
 - 2x7 kW wind turbine s
 - Flooded batteries
 - 2 x 4.5 kW inverter
 - 16 kWA backup gas generator

Santa Cruz Island, California, USA

- Remote Telecommunications station
- Power System
 - -PV array
 - Two wind turbines
 - No Backup generator
- Vary costly access/site visits
- Remote operation and monitoring of system

Northern Power Systems

Mt. Newall, Antarctica

- ScienceFoundationStation project
- Repeater and Seismic monitoring station
- Power System
 - 3.3 kW PV array
 - Diesel generator
 - HR3 wind turbine

Northern Power Systems

Woodstock, Minnesota

- Wind farm maintenance shop and office
- Electric loads include lighting, PC, and shop tools
- Passive solar day-lighting, corn used for space heat
- Installed cost \$6,800 in 2001 (grid extension alternative: \$7,500)
- 1200 ft² shop, 900 ft² office
- Whisper H40 wind turbine, 900 W, 35-ft tower
- PV panels, 500 W
- 24 VDC battery, 750 Ah
- 4-kW inverter, 120 VAC single phase

Mini-Grid Power Systems

- Larger systems with demands up to ~700kWh/day load (100 kW peak load)
- Same components used as in Micro-Grids, just more of them and larger
- Use of batteries to store renewable energy for use at times of light loading
- Generator used to supply large loads
- Mature market though fewer examples
- Provide AC power

Dangling Rope Marina, Utah, USA

- Remote National Park Center
- 160 kW PV /
 Propane generator
 hybrid system

San Juanico, Mexico

Remote fishing community of 400 people with tourism

Power System

- 17 kW PV
- 70 kW wind
- 80 kW diesel generator

Low Penetration

- Capital cost of between \$1,000-1,500/ per kW of wind capacity, excluding diesel units and plant BOS
- Easy integration with existing diesel system, little or no diesel modifications required
- Modest fuel savings of up to ~20% possible.
- System support requirements:
 - Wind turbine maintenance.

Ascension Island

Four NEG-Micon 225 kW turbines installed in 1996.

- U.S. Air Force installation on British island in mid-Atlantic ocean.
- Prime diesel generation with rotary interconnect to British 50 hertz system
- Pacific Electric
 Industries

Kotzebue, Alaska

- 11 MW remote diesel power station in Northern Alaska
- 2 MW peak load with 700kW minimum load
- Installation of 10 AOC 15/50, 50 kW wind turbines and 1 NW 100, 100kW wind turbine
- KEA, Island
 Technologies, AOC

Medium Penetration

- Capital cost of between \$1,500-2,500 per kW of wind capacity, excluding diesel units and plant BOS.
- Some diesel controls modifications necessary
- Usually must install/integrate secondary loads to regulate minimum diesel loading.
- Requires relatively simple supervisory control
- Greater fuel savings possible, up to ~40%
- Additional support requirements:
 - Wind turbine maintenance
 - Secondary load maintenance

Coyaique, Chile

Isolated Community
Private Utility

– 2 MW Wind, 4.6 MWHydro, 16.9 MW Diesel

Remote installation

San Clemente Island, California

- U.S. Navy island 53 miles off San Diego
- Diesel powered grid
- Average demand 850-950 kW
- Peak demand 1,400 kW
- Pacific Electric Industries

SCI Diesel Plant

- Yearly impact -
- \$97,000 fuel savings
- 871,785 Ton CO₂ avoided

- Four generators
- 3 NEG-Micon 225 kW turbines

Selawik, Alaska

- Small AVEC community in northern Alaska
- Installation of 4 AOC 15/50, 50 kW wind turbines and dump loads
- Part of a diesel plantretrofit project

AVEC, Entegrity/AOC, Sustainable Automation

High Penetration

- Capital cost between \$2,500-4,000 per kW of wind capacity, excluding diesel units and plant BOS
- Significant diesel controls modifications may be necessary and new diesel control panels highly recommended
- Must install integrated secondary loads
- Requires sophisticated supervisory control system
- Some control of wind turbine output recommend
- Highest fuel savings possible, up to ~70%
- Additional support requirements:
 - Active assessment to insure system maintains adequate control of system power quality.
 - Wind turbine maintenance
 - Secondary load maintenance

Wales Alaska Wind Diesel System

High penetration system

- 80kW average load with 130kW of wind power
- Short term battery storage
- Resistive loads used for heating and hot water
- AVAC, KEA and NREL

St. Paul Alaska, USA

Island in the middle of the Bering Sea Peak load of 160kW
Cost of Power, ± \$0.21/kWh
Waste energy used for heating
TDX and Northern Power Systems

